Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Food Chem ; 447: 138945, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461725

ABSTRACT

Artificial intelligence has the potential to alter the agricultural and food processing industries, with significant ramifications for sustainability and global food security. The integration of artificial intelligence in agriculture has witnessed a significant uptick in recent years. Therefore, comprehensive understanding of these techniques is needed to broaden its application in agri-food supply chain. In this review, we explored cutting-edge artificial intelligence methodologies with a focus on machine learning, neural networks, and deep learning. The application of artificial intelligence in agri-food industry and their quality assurance throughout the production process is thoroughly discussed with an emphasis on the current scientific knowledge and future perspective. Artificial intelligence has played a significant role in transforming agri-food systems by enhancing efficiency, sustainability, and productivity. Many food industries are implementing the artificial intelligence in modelling, prediction, control tool, sensory evaluation, quality control, and tackling complicated challenges in food processing. Similarly, artificial intelligence applied in agriculture to improve the entire farming process, such as crop yield optimization, use of herbicides, weeds identification, and harvesting of fruits. In summary, the integration of artificial intelligence in agri-food systems offers the potential to address key challenges in agriculture, enhance sustainability, and contribute to global food security.


Subject(s)
Artificial Intelligence , Food-Processing Industry , Food Industry , Food Handling , Neural Networks, Computer , Agriculture
2.
Molecules ; 28(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067489

ABSTRACT

Pharmaceutical companies are investigating more source matrices for natural bioactive chemicals. Friedelin (friedelan-3-one) is a pentacyclic triterpene isolated from various plant species from different families as well as mosses and lichen. The fundamental compounds of these friedelane triterpenoids are abundantly found in cork tissues and leaf materials of diverse plant genera such as Celastraceae, Asteraceae, Fabaceae, and Myrtaceae. They possess many pharmacological effects, including anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. Friedelin also has an anti-insect effect and the ability to alter the soil microbial ecology, making it vital to agriculture. Ultrasound, microwave, supercritical fluid, ionic liquid, and acid hydrolysis extract friedelin with reduced environmental impact. Recently, the high demand for friedelin has led to the development of CRISPR/Cas9 technology and gene overexpression plasmids to produce friedelin using genetically engineered yeast. Friedelin with low cytotoxicity to normal cells can be the best phytochemical for the drug of choice. The review summarizes the structural interpretation, biosynthesis, physicochemical properties, quantification, and various forms of pharmacological significance.


Subject(s)
Triterpenes , Humans , Triterpenes/chemistry , Anti-Inflammatory Agents , Antioxidants/pharmacology , Phytochemicals
3.
Biochem Biophys Res Commun ; 688: 149126, 2023 12 25.
Article in English | MEDLINE | ID: mdl-37951153

ABSTRACT

The prospective contribution of phyto-nanotechnology to the synthesis of silver nanomaterials for biomedical purposes is attracting increasing interest across the world. Green synthesis of silver nanoparticles (Ag-NPs) through plants has been extensively examined recently, and it is now seen to be a green and efficient path for future exploitation and development of practical nano-factories. Fabrication of Ag-NPs is the process involves use of plant extracts/phyto-compounds (e.g.alkaloids, terpenoids, flavonoids, and phenolic compounds) to synthesise nanoparticles in more economical and feasible. Several findings concluded that in the field of medicine, Ag-NPs play a major role in pharmacotherapy (infection and cancer). Indeed, they exhibits novel properties but the reason is unclear (except some theoretical interpretation e.g. size, shape and morphology). But recent technological advancements help to address these questions by predicting the unique properties (composition and origin) by characterizing physical, chemical and biological properties. Due to increased list of publications and their application in the field of agriculture, industries and pharmaceuticals, issues relating to toxicity are unavoidable and question of debate. The present reviews aim to find out the role of plant extracts to synthesise Ag-NPs. It provides an overview of various phytocompounds and their role in the field of biomedicine (antibacterial, antioxidant, anticancer, anti-inflammatory etc.). In addition, this review also especially focused on various applications such as role in infection, oxidative stress, application in medical engineering, diagnosis and therapy, medical devices, orthopedics, wound healing and dressings. Additionally, the toxic effects of Ag-NPs in cell culture, tissue of different model organism, type of toxic reactions and regulation implemented to reduce associated risk are discussed critically. Addressing all above explanations, this review focus on the detailed properties of plant mediated Ag-NPs, its impact on biology, medicine and their commercial properties as well as toxicity.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Prospective Studies , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology
4.
Plants (Basel) ; 12(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005755

ABSTRACT

Mungbean is known to be susceptible to waterlogging (WL) stress. Some of the wild species have the potential to tolerate this through various physiological and molecular mechanisms. Auxin Response Factor (ARF) and Auxin/Indole Acetic Acid (AUX/IAA), an early responsive gene family, has multiple functions in growth, development, and stress tolerance. Here, we report the first comprehensive analysis of the ARF and AUX/IAA gene family in mungbean. A total of 26 ARF and 19 AUX/IAA genes were identified from the mungbean genome. The ARF and AUX/IAA candidates were clearly grouped into two major clades. Further, the subgrouping within the major clades indicated the presence of significant diversity. The gene structure, motif analysis, and protein characterization provided the clue for further fundamental research. Out of the10 selected candidate genes, VrARF-5, VrARF-11, VrARF-25, and VrAUX/IAA-9 were found to significantly multiple-fold gene expression in the hypocotyl region of WL-tolerant wild relatives (PRR 2008-2) provides new insight into a role in the induction of lateral root formation under WL stress. The analysis provides an insight into the structural diversity of ARF and AUX/IAA genes in mungbean. These results increase our understanding of ARF and AUX/IAA genes and therefore offer robust information for functional investigations, which can be taken up in the future and will form a foundation for improving tolerance against waterlogging stress.

5.
Environ Sci Pollut Res Int ; 30(53): 113242-113279, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37864686

ABSTRACT

Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.


Subject(s)
Drinking Water , Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Humans , Water Pollutants, Chemical/analysis , Water Purification/methods , Environmental Pollution
6.
Front Pharmacol ; 14: 1153600, 2023.
Article in English | MEDLINE | ID: mdl-37608892

ABSTRACT

The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.

7.
Sci Rep ; 13(1): 13071, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567958

ABSTRACT

Diabetes, characterized by high blood glucose level, is a progressive metabolic disease that leads to serious health complications. One of the major pathological consequences associated with diabetes is the accumulation of highly reactive carbonyl compounds called advanced glycation end products (AGEs). Most of the AGEs are dicarbonyls and have the potential to covalently modify proteins especially at the lysine residues in a non-enzymatic fashion (a process termed as glycation) resulting in the functional impairment and/or toxic gain in function. Therefore, non-toxic small molecules that can inhibit glycation are of interest for the therapeutic intervention of diabetes. In the present communication, we have investigated the effect of organosulfurs (S-allyl cysteine, SAC and N-acetyl cysteine, NAC) that are major principal components of Allium sativa against the glycation of different proteins. We discovered that both SAC and NAC are potent anti-glycating agents. We also found that both SAC and NAC reduce ROS level and inhibit apoptosis caused by protein glycation.


Subject(s)
Acetylcysteine , Cysteine , Acetylcysteine/pharmacology , Cysteine/metabolism , Glycation End Products, Advanced/metabolism , Antioxidants/pharmacology , Maillard Reaction
8.
Molecules ; 28(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36985818

ABSTRACT

Diabetes mellitus is a complex illness in which the body does not create enough insulin to control blood glucose levels. Worldwide, this disease is life-threatening and requires low-cost, side-effect-free medicine. Due to adverse effects, many synthetic hypoglycemic medications for diabetes fail. Mushrooms are known to contain natural bioactive components that may be anti-diabetic; thus, scientists are now targeting them. Mushroom extracts, which improve immune function and fight cancer, are becoming more popular. Mushroom-derived functional foods and dietary supplements can delay the onset of potentially fatal diseases and help treat pre-existing conditions, which leads to the successful prevention and treatment of type 2 diabetes, which is restricted to the breakdown of complex polysaccharides by pancreatic-amylase and the suppression of intestinal-glucosidase. Many mushroom species are particularly helpful in lowering blood glucose levels and alleviating diabetes symptoms. Hypoglycaemic effects have been observed in investigations on Agaricussu brufescens, Agaricus bisporus, Cordyceps sinensis, Inonotus obliqus, Coprinus comatus, Ganoderma lucidum, Phellinus linteus, Pleurotus spp., Poria cocos, and Sparassis crispa. For diabetics, edible mushrooms are high in protein, vitamins, and minerals and low in fat and cholesterol. The study found that bioactive metabolites isolated from mushrooms, such as polysaccharides, proteins, dietary fibers, and many pharmacologically active compounds, as well as solvent extracts of mushrooms with unknown metabolites, have anti-diabetic potential in vivo and in vitro, though few are in clinical trials.


Subject(s)
Agaricales , Diabetes Mellitus, Type 2 , Pleurotus , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/prevention & control , Blood Glucose , Dietary Supplements , Polysaccharides
9.
Metabolites ; 13(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36984882

ABSTRACT

Cannabis belongs to the family Cannabaceae, and phytocannabinoids are produced by the Cannabis sativa L. plant. A long-standing debate regarding the plant is whether it contains one or more species. Phytocannabinoids are bioactive natural products found in flowers, seeds, and fruits. They can be beneficial for treating human diseases (such as multiple sclerosis, neurodegenerative diseases, epilepsy, and pain), the cellular metabolic process, and regulating biological function systems. In addition, several phytocannabinoids are used in various therapeutic and pharmaceutical applications. This study provides an overview of the different sources of phytocannabinoids; further, the biosynthesis of bioactive compounds involving various pathways is elucidated. The structural classification of phytocannabinoids is based on their decorated resorcinol core and the bioactivities of naturally occurring cannabinoids. Furthermore, phytocannabinoids have been studied in terms of their role in animal models and antimicrobial activity against bacteria and fungi; further, they show potential for therapeutic applications and are used in treating various human diseases. Overall, this review can help deepen the current understanding of the role of biotechnological approaches and the importance of phytocannabinoids in different industrial applications.

10.
Plants (Basel) ; 12(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771713

ABSTRACT

Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.

11.
Antioxidants (Basel) ; 11(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36552586

ABSTRACT

Citrus is one of the main fruit crops cultivated in tropical and subtropical regions worldwide. Approximately half (40-47%) of the fruit mass is inedible and discarded as waste after processing, which causes pollution to the environment. Essential oils (EOs) are aromatic compounds found in significant quantities in oil sacs or oil glands present in the leaves, flowers, and fruit peels (mainly the flavedo part). Citrus EO is a complex mixture of ~400 compounds and has been found to be useful in aromatic infusions for personal health care, perfumes, pharmaceuticals, color enhancers in foods and beverages, and aromatherapy. The citrus EOs possess a pleasant scent, and impart relaxing, calming, mood-uplifting, and cheer-enhancing effects. In aromatherapy, it is applied either in message oils or in diffusion sprays for homes and vehicle sittings. The diffusion creates a fresh feeling and enhances relaxation from stress and anxiety and helps uplifting mood and boosting emotional and physical energy. This review presents a comprehensive outlook on the composition, properties, characterization, and mechanism of action of the citrus EOs in various health-related issues, with a focus on its antioxidant properties.

12.
Life (Basel) ; 12(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36556351

ABSTRACT

Gut microbiota encompasses the resident microflora of the gut. Having an intricate relationship with the host, it plays an important role in regulating physiology and in the maintenance of balance between health and disease. Though dietary habits and the environment play a critical role in shaping the gut, an imbalance (referred to as dysbiosis) serves as a driving factor in the occurrence of different diseases, including cardiovascular disease (CVD). With risk factors of hypertension, diabetes, dyslipidemia, etc., CVD accounts for a large number of deaths among men (32%) and women (35%) worldwide. As gut microbiota is reported to have a direct influence on the risk factors associated with CVDs, this opens up new avenues in exploring the possible role of gut microbiota in regulating the gross physiological aspects along the gut-heart axis. The present study elaborates on different aspects of the gut microbiota and possible interaction with the host towards maintaining a balance between health and the occurrence of CVDs. As the gut microbiota makes regulatory checks for these risk factors, it has a possible role in shaping the gut and, as such, in decreasing the chances of the occurrence of CVDs. With special emphasis on the risk factors for CVDs, this paper includes information on the prominent bacterial species (Firmicutes, Bacteriodetes and others) towards an advance in our understanding of the etiology of CVDs and an exploration of the best possible therapeutic modules for implementation in the treatment of different CVDs along the gut-heart axis.

13.
Plants (Basel) ; 11(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36235454

ABSTRACT

The widespread use of fertilizers is a result of the increased global demand for food. The commonly used chemical fertilizers may increase plant growth and output, but they have deleterious effects on the soil, the environment, and even human health. Therefore, nanofertilizers are one of the most promising solutions or substitutes for conventional fertilizers. These engineered materials are composed of nanoparticles containing macro- and micronutrients that are delivered to the plant rhizosphere in a regulated manner. In nanofertilizers, the essential minerals and nutrients (such as N, P, K, Fe, and Mn) are bonded alone or in combination with nano-dimensional adsorbents. This review discusses the development of nanotechnology-based smart and efficient agriculture using nanofertilizers that have higher nutritional management, owing to their ability to increase the nutrient uptake efficiency. Additionally, the synthesis and mechanism of action of the nanofertilizers are discussed, along with the different types of fertilizers that are currently available. Furthermore, sustainable agriculture can be realised by the targeted delivery and controlled release of nutrients through the application of nanoscale active substances. This paper emphasises the successful development and safe application of nanotechnology in agriculture; however, certain basic concerns and existing gaps in research need to be addressed and resolved.

14.
Biomed Res Int ; 2022: 4661491, 2022.
Article in English | MEDLINE | ID: mdl-36225979

ABSTRACT

Tuberculosis (T.B.) is a disease that occurs due to infection by the bacterium, Mycobacterium tuberculosis (Mtb), which is responsible for millions of deaths every year. Due to the emergence of multidrug and extensive drug-resistant Mtb strains, there is an urgent need to develop more powerful drugs for inclusion in the current tuberculosis treatment regime. In this study, 1778 molecules from four medicinal plants, Azadirachta indica, Camellia sinensis, Adhatoda vasica, and Ginkgo biloba, were selected and docked against two chosen drug targets, namely, Glutamine Synthetase (G.S.) and Isocitrate Lyase (I.C.L.). Molecular Docking was performed using the Glide module of the SchrÓ§dinger suite to identify the best-performing ligands; the complexes formed by the best-performing ligands were further investigated for their binding stability via Molecular Dynamics Simulation of 100 ns. The present study suggests that Azadiradione from Azadirachta indica possesses the potential to inhibit Glutamine Synthetase and Isocitrate Lyase of M. tuberculosis concomitantly. The excellent docking score of the ligand and the stability of receptor-ligand complexes, coupled with the complete pharmacokinetic profile of Azadiradione, support the proposal of the small molecule, Azadiradione as a novel antitubercular agent. Further, wet lab analysis of Azadiradione may lead to the possible discovery of a novel antitubercular drug.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Glutamate-Ammonia Ligase/metabolism , Humans , Isocitrate Lyase/chemistry , Ligands , Limonins , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/metabolism , Tuberculosis/drug therapy
15.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142546

ABSTRACT

Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to the concept of the involvement of a novel eco-friendly avenue to produce AgNPs employing the wild endolichenic fungus Talaromyces funiculosus. The synthesized Talaromyces funiculosus-AgNPs were evaluated with the aid of UV visible spectroscopy, dynamic light scattering (DLS), Fourier infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized Talaromyces funiculosus-AgNPs (TF-AgNPs) exhibited hemo-compatibility as evidenced by a hemolytic assay. Further, they were evaluated for their efficacy against foodborne pathogens Staphylococcus aureus, Streptococcus faecalis, Listeria innocua, and Micrococcus luteus and nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis bacterial strains. The synthesized TF-AgNPs displayed cytotoxicity in a dose-dependent manner against MDA-MB-231 breast carcinoma cells and eventually condensed the chromatin material observed through the Hoechst 33342 stain. Subsequent analysis using flow cytometry and fluorescence microscopy provided the inference of a possible role of intracellular ROS (OH-, O-, H2O2, and O2-) radicals in the destruction of mitochondria, DNA machinery, the nucleus, and overall damage of the cellular machinery of breast cancerous cells. The combined effect of predation by the cyclopoid copepod Mesocyclops aspericornis and TF-AgNPS for the larval management of dengue vectors were provided. A promising larval control was evident after the conjunction of both predatory organisms and bio-fabricated nanoparticles. Thus, this study provides a novel, cost-effective, extracellular approach of TF-AgNPs production with hemo-compatible, antioxidant, and antimicrobial efficacy against both human and foodborne pathogens with cytotoxicity (dose dependent) towards MDA-MB-231 breast carcinoma.


Subject(s)
Anti-Infective Agents , Breast Neoplasms , Metal Nanoparticles , Talaromyces , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Chromatin , Escherichia coli , Female , Humans , Hydrogen Peroxide/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Reactive Oxygen Species/pharmacology , Silver/chemistry , Silver/pharmacology
17.
Front Pharmacol ; 13: 805344, 2022.
Article in English | MEDLINE | ID: mdl-35462888

ABSTRACT

SARS-CoV-2 is the virus responsible for causing COVID-19 disease in humans, creating the recent pandemic across the world, where lower production of Type I Interferon (IFN-I) is associated with the deadly form of the disease. Membrane protein or SARS-CoV-2 M proteins are known to be the major reason behind the lower production of human IFN-I by suppressing the expression of IFNß and Interferon Stimulated Genes. In this study, 7,832 compounds from 32 medicinal plants of India possessing traditional knowledge linkage with pneumonia-like disease treatment, were screened against the Homology-Modelled structure of SARS-CoV-2 M protein with the objective of identifying some active phytochemicals as inhibitors. The entire study was carried out using different modules of Schrodinger Suite 2020-3. During the docking of the phytochemicals against the SARS-CoV-2 M protein, a compound, ZIN1722 from Zingiber officinale showed the best binding affinity with the receptor with a Glide Docking Score of -5.752 and Glide gscore of -5.789. In order to study the binding stability, the complex between the SARS-CoV-2 M protein and ZIN1722 was subjected to 50 ns Molecular Dynamics simulation using Desmond module of Schrodinger suite 2020-3, during which the receptor-ligand complex showed substantial stability after 32 ns of MD Simulation. The molecule ZIN1722 also showed promising results during ADME-Tox analysis performed using Swiss ADME and pkCSM. With all the findings of this extensive computational study, the compound ZIN1722 is proposed as a potential inhibitor to the SARS-CoV-2 M protein, which may subsequently prevent the immunosuppression mechanism in the human body during the SARS-CoV-2 virus infection. Further studies based on this work would pave the way towards the identification of an effective therapeutic regime for the treatment and management of SARS-CoV-2 infection in a precise and sustainable manner.

18.
Mol Biol Rep ; 49(8): 8109-8120, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35364718

ABSTRACT

N-linked protein glycosylation is an essential co-and posttranslational protein modification that occurs in all three domains of life; the assembly of N-glycans follows a complex sequence of events spanning the (Endoplasmic Reticulum) ER and the Golgi apparatus. It has a significant impact on both physicochemical properties and biological functions. It plays a significant role in protein folding and quality control, glycoprotein interaction, signal transduction, viral attachment, and immune response to infection. Glycoengineering of protein employed for improving protein properties and plays a vital role in the production of recombinant glycoproteins and struggles to humanize recombinant therapeutic proteins. It considers an alternative platform for biopharmaceuticals production. Many immune proteins and antibodies are glycosylated. Pathogen's glycoproteins play vital roles during the infection cycle and their expression of specific oligosaccharides via the N-glycosylation pathway to evade detection by the host immune system. This review focuses on the aspects of N-glycosylation processing, glycoengineering approaches, their role in viral attachment, and immune responses to infection.


Subject(s)
Golgi Apparatus , Virus Diseases , Endoplasmic Reticulum/metabolism , Glycoproteins/metabolism , Glycosylation , Golgi Apparatus/metabolism , Humans , Polysaccharides/metabolism , Recombinant Proteins/metabolism
19.
Oxid Med Cell Longev ; 2022: 3863138, 2022.
Article in English | MEDLINE | ID: mdl-35251470

ABSTRACT

Green-based synthesis of metal nanoparticles using marine seaweeds is a rapidly growing technology that is finding a variety of new applications. In the present study, the aqueous extract of a marine seaweed, Gracilaria edulis, was employed for the synthesis of metallic nanoparticles without using any reducing and stabilizing chemical agents. The visual color change and validation through UV-Vis spectroscopy provided an initial confirmation regarding the Gracilaria edulis-mediated green synthesized silver nanoparticles. The dynamic light scattering studies and high-resolution transmission electron microscopy pictographs exhibited that the synthesized Gracilaria edulis-derived silver nanoparticles were roughly spherical in shape having an average size of 62.72 ± 0.25 nm and surface zeta potential of -15.6 ± 6.73 mV. The structural motifs and chemically functional groups associated with the Gracilaria edulis-derived silver nanoparticles were observed through X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. Further, the synthesized nanoparticles were further screened for their antioxidant properties through DPPH, hydroxyl radical, ABTS, and nitric oxide radical scavenging assays. The phycosynthesized nanoparticles exhibited dose-dependent cytotoxicity against MDA-MB-231 breast carcinoma cells having IC50 value of 344.27 ± 2.56 µg/mL. Additionally, the nanoparticles also exhibited zone of inhibition against pathogenic strains of Bacillus licheniformis (MTCC 7425), Salmonella typhimurium (MTCC 3216), Vibrio cholerae (MTCC 3904), Escherichia coli (MTCC 1098), Staphylococcus epidermidis (MTCC 3615), and Shigella dysenteriae (MTCC9543). Hence, this investigation explores the reducing and stabilizing capabilities of marine sea weed Gracilaria edulis for synthesizing silver nanoparticles in a cost-effective approach with potential anticancer and antimicrobial activity. The nanoparticles synthesized through green method may be explored for their potential utility in food preservative film industry, biomedical, and pharmaceutical industries.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Gracilaria/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Seaweed/chemistry , Silver/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Drug Delivery Systems/methods , Female , Humans , Microbial Sensitivity Tests , Particle Size
20.
J Fungi (Basel) ; 8(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35205965

ABSTRACT

Obesity, usually indicated by a body mass index of more than 30 kg/m2, is a worsening global health issue. It leads to chronic diseases, including type II diabetes, hypertension, and cardiovascular diseases. Conventional treatments for obesity include physical activity and maintaining a negative energy balance. However, physical activity alone cannot determine body weight as several other factors play a role in the overall energy balance. Alternatively, weight loss may be achieved by medication and surgery. However, these options can be expensive or have side effects. Therefore, dietary factors, including dietary modifications, nutraceutical preparations, and functional foods have been investigated recently. For example, edible mushrooms have beneficial effects on human health. Polysaccharides (essentially ß-D-glucans), chitinous substances, heteroglycans, proteoglycans, peptidoglycans, alkaloids, lactones, lectins, alkaloids, flavonoids, steroids, terpenoids, terpenes, phenols, nucleotides, glycoproteins, proteins, amino acids, antimicrobials, and minerals are the major bioactive compounds in these mushrooms. These bioactive compounds have chemo-preventive, anti-obesity, anti-diabetic, cardioprotective, and neuroprotective properties. Consumption of edible mushrooms reduces plasma triglyceride, total cholesterol, low-density lipoprotein, and plasma glucose levels. Polysaccharides from edible mushrooms suppress mRNA expression in 3T3-L1 adipocytes, contributing to their anti-obesity properties. Therefore, edible mushrooms or their active ingredients may help prevent obesity and other chronic ailments.

SELECTION OF CITATIONS
SEARCH DETAIL
...